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The fundamental geometrical property of flow around a body at hypersonic
speeds is the proximity of the bow shock to the body surface (with a
correspondingly large density in the layer behind the shock). This pro-
perty has been used in a number of papers to set up approximate methods
of calculation (¢f. for example [ 1 ]). Particular attention has been paid
to limiting cases in which the ratio of specific heats y - 1 and the Mach
number M » o for a body of non-vanishing thickness, The shock then co-
incides with the body surface, and the density of the air behind the
shock is infinitely large. Notwithstanding the fact that the thickness

of the layer behind the shock is equal to zero in the limit, the pressure
at the surface of the body will be different from the pressure immediately
behind the shock owing to the action of centrifugal forces on the thin
layer of high density. This effeet of centrifugal forces on surface
pressure was first computed by Busemann for two-dimensional and axially
symmetric bodies, and Busewann’s solution has been used as the first term
in a series expansion in powers of a small parameter (¢ = (y - 1)/(y + 1),
I/Miz) [2, 3] and as a first approximation in a process of successive
approximations [4, 5 1.

In all the papers mentioned the flows considered were two-dimensional,
so that the calculations could be materially facilitated by the intro-
duction of a stream function. In one paper [ 6 ] it was shown that the
leading terms in an expansion of the stream function in powers of the
distance from the shock also gives a satisfactory approximation. Although
attempts have been made to estimate the effects of centrifugal forces on
pressure for flow around a body of revolution at angle of attack [7 ],
there exists no sufficiently reliable method of calculation, analogous
to the Busemann method, for a body of arbitrary shape. An attempt to
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propose such a method is made in the present paper.

For the limiting case of a layer of vanishing thickness behind the bow
shock, a method is presented for calculating surface pressure on a body
of arbitrary shape. The streamlines in the layer behind the shock are de-
termined as unaccelerated particle paths at the body surface as a function
of the initial velocities. The streamline distribution through the layer
is then found from the equation of continuity, and the pressure at the
body surface is computed when the streamlines are known.

1. The equation of motion in a system of curvilinear co-
ordinates based on the bow shock. It is well known that the sur-
faces parallel to a given surface S together with two families of develop-
able surfaces generated by normals to the surface S in the directions of
[principal 1 curvature make up an orthogonal system [8 1*. We will take
as surface S the bow shock, as curvilinear coordinates the parameters &,

n on lines of curvature, and as coordinate { the normal distance measured
from the shock surface toward the body.

Adopting the usual notation, in which E, G are the coefficients of the
first fundamental quadratic form, L, N are the coefficients of the second
fundamental quadratic form, and R, are the principal radii of curva-
ture [8 ], for the Lam€ coefficients we will have**
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In this system of coordinates the equations of Euler and the equations
of continuity and isentropy for an ideal gas have the form

(1.1)
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* V.V, Struminskii has used such a system for the derivation of the
boundary layer equations.

** The index denotes the quantity varying along the coordinate lines.
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where u, v, w are the velocity components in the direction of the co-
ordinate lines. Equations (1.1) represent a system of five quasilinear
equations in five unknowns u, v, w, p, p. From these five equations may
be determined five first derivatives with respect to { at { = 0, using
given data immediately behind the shock. The derivatives du/d¢ ,
dv/d¢ are computed directly from the first two of equations (1.1). The
determinant of the remaining three equations, from which the derivatives
of w, p, and p with respect to { are to be found, is

; |

¢ 0 w

ad ( ll——zv2>

::?\ 0

0 wp_Y —Ypwe —(v+1)

and reduces to zero only if the shock degenerates into a weak wave.
Further derivatives with respect to { may be found by differentiating
equations (1.1) with respect to {, whereas the determinant of the last
three equations will be the same.

2. Velocity, density, and pressure immediately behind the
bow shock. The normal velocity component w,, the density p,, and the
pressure p, immediately behind the shock are expressed in terms on the
normal velocity component w,, the density p,, and the pressure p, ahead
of the shock in the following way;
2
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Note: If the enthalpy behind the shock may be taken as
Yz P2
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but y, # Yy because of the high temperature, then
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so that for y, » 1 the velocity w, behind the shock approaches zero in-
dependently of w, /a,.
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If we assume that the vector velocity V in the undisturbed stream
(ahead of the shock) is situated in the xy plane and makes an angle a with
the x-axis, then the components of this velocity in the curvilinear co-
ordinate system will be

. 14 d(y, 2) . 0 (z, x)
Wy = e [cosa FE + sin “ma(i,n)] (2.2)
Uy = Uy = % (cosag% + sinalzié), vy = vy = i,KG—:(COS “z—:-l* sin a g}‘;\)

In order for it to be possible to introduce a stream function, one of
the derivatives in the continuity equation (the fourth of equations 1.1),
for example dpvH, /dn, has to be put equal to zero, in particular,
immediately behind the shock. This is possible only if all the derivatives
of the coordinates x, y, z with respect to ¢ and n are functions only of
¢ at the shock, or if cos adx/dn+ sinady/dn= 0 at the shock.

In the first case the shock is a cylindrical surface, and the lines
n [= constant ] are straight lines; in the second case the shock is an
axially symmetric or helical surface, and the lines n [= constant ] are
either circles or straight lines. The shock configurations just specified
exhaust the cases for which a stream function may be introduced.

3. Approximate equations for the case of a "strong" shock.
Equations (1.1) are materially simplified if the density behind the shock
is much greater than the density in the undisturbed stream (the limit
pz/'p1 + o ). This occurs for ¢ » 0 or for a 2/wl2 > 0; 1.e. for Mi > 00,
provided that the angle between the normal to the shock surface and the
vector velocity V does not approach 7/2 (nonvanishing body thickness).
This case corresponds to a value of the similarity criterion for super-
sonic velocities K » . For the conditions specified it may be assumed
that quantities are of the same order in the layer behind the shock as
they are just behind the shock, namely

w=eVw, u=Vu, v=V, %‘ = :—, p=pViP'

where ¢ is a small parameter and w”, u’, v’, p°, p’ are quantities of
order unity. The coordinate { is of the order of the small parameter ¢
compared to the two other coordinates. The elimination of quantities of
order ¢ or higher in equations (1.1) compared to quantities of order
unity gives the following simplified equations:

u {HnVE‘—___Laan—b—):O (3.1)
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Multiplying the first equation by u and the second by v and adding,
we have

M A4 | v d4eY) | dute?)
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That is, the projection of the velocity on a plane tangent to the shock
does not change along a streamline, Thus in the case of high density but
finite pressure behind the shock the gas in the thin layer between the
shock and the body moves without acceleration in a tangential plane,

while the component of acceleration normal to the shock (body) surface

is balanced by a pressure gradient normal to the shock surface. We will
use the notation tg 6 = u/v, q = y u® + v%; then, taking account of (3.6),
instead of equations (3.1)-(3.5) we obtain
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The assumptions adopted here concerning the small thickness of the
layer behind the shock and the high density in this layer are permissible
as long as the pressure at the surface of the body does not become small
(p = 0), in which case there is a corresponding decrease in the density
and the shock leaves the body. Under these conditions the disturbances
are already small, and it is not permissible in the equations of motion
to discard quantities of order ¢. An estimate of the order of the terms
in the equations of motion for this case of small disturbances (K > 0,
but K £ = ) leads to certain simplifications [1]; however, the use of a
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system of coordinates based on the shock is unsuitable for this case*.

4. Approximate solution. One method for computing the flow behind
the shock is the use of series in powers of {, the coefficients of which
are calculated from equations (1.1)-(1.5) or (3.1)-(3.5).

The accuracy of such calculations (series convergence), especially
for the region of subsonic flow in front of a blunt-nosed body, needs
investigation; nevertheless, the results of sufficiently rigorous cal-
culations [9] for a body of revolution (M = 5.8) apparently show that in
the subsonic region the change in the velocity components with a change
in ¢ may be adequately represented by the first terms of the series [6].
For pressure and density it is better to use the Bernoulli equation

u? 4 v? + w? _1+s£_V2 1+ep

2 T2 2 2 p1
With the object of confirming this explicit assumption, we will present
the results of calculations, using the series, of the distance A between
the shock and the stagnation point of a blunt axially symmetric body.
From equations (3.1)-(3.5), on the longitudinal body axis behind the shock
we obtain
<6w> 2V /a'lw) e
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where R is the radius of curvature of the shock, Consequently

o ewe | v
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At the stagnation point of the body w = 0, so that for the distance
between the shock and the stagnation point we obtaln
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This value of A for M, » « proves to be close to the value calculated
by the method of Ref. 6. The use of series for the case of a body of
arbitrary shape will lead to a complicated computation, and here we will
employ another procedure suitable for the solution of equations (3.7)-
(3.10), given the normal velocity, density, and pressure at the shock in
accordance with equations (2.1)-(2.3).

* It is an interesting circumstance that in the case of a thin wing
lying in the xz plane the equations of motion for small disturbances
reduce to the non-steady equations of motion for a piston at each
cross-section whose plane is parallel to the plane «xy.
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Considering the extreme thinness of the layer between the shock and
the body, we will assume that the particle paths in the gas are [ equally]
inclined to the surface of the shock; then in place of (3.7) we will
obtain

cos® 90 | sin® 90  cos® AInVE  sin olnV@ (4.1)
VE 9% VG M V@ o VE 3 )
This assumption may give rise to appreciable errors only in the

neighborhood of the stagnation point of a blunt body. If the equation of
a streamline isn =9 (£ ), then tg 8= G/Edn /d€. But the left-hand
side of equation (4.1) is nothing but the derivative of the angle 6 along
the arc of a streamline; i.e. (360/3& )cos 6 /y E. Consequently, in
place of (4.1) we will have

de t [8VE E A
=7 (T ) *2)

From this equation we obtain an ordinary nonlinear second-order equa-
tion to determine the streamlines;

dm | 1 9G (dq\3 , @ VGyrdn2 | 9 .__G_..)i’l.__iﬁ.=
B+ (s tm ) (@) “vE)E = =
Having the projection of the streamlines on the shock surface, it is

now necessary to distribute these streamlines across the layer in such a
way as to satisfy the continuity equation.

At any point (£, 5) the streamlines passing through.a normal to the
shock surface end on some line L in the shock surface. We will take a
surface element defined by an element of this line L(do,) and an element
of its normal (dn,) at a point (£,, 7,). The equation of continuity for
a stream tube passing through this surface element will be p,w,do,dn, =
pqd{dn, where dn is the distance between the streamlines generating
the stream tube (passing through the ends of the segment dn,).

Let the equation of a streamline be given in the formn ="3(£,, 7,, £).
The increment in the coordinate n for a change in the parameters ¢,, 1,
together with a displacement along the stream line should be equal to
the increment in the coordinate  for a displacement along a normal to
the streamline at the point (£, 7);

3 ] d E
dm = b—g’;dsg +a—’;—d'r)2+72~'~dE= — '/z,—ctgﬂdg.

From this
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The increments in the parameters fz, n, are found from the quantity
dnz, and we obtain

— VE-'zdsz = dn, sin 1, VGTzd'f.z = dn, cos v,
where y, is the angle between the tangents to the line L and to_the co-

ordinate line ¢ at the point ({9, 79). Inasmch as d§ =~ (1/VE) sin 6 dn,
then

= a sin I7]
dn = dn,cos 9 G(cofc’l2 on __sny: m ) =
2 V VG, o VE, 0% m (s3) dn,

Substituting this expression in the continuity equation, we obtain

__ p1w do,
= s (55
The variable of integration in (3.8) may now be changed from { to o,:
ap pr1w1g [ cos? 9 sin% 6
de,  m (52)< Ry + R, ) (4.5)

The quantities entering into (4.5) depend both on the coordinates of
the point (£, n) as parameters and on the coordinates of the point (£,,
n,) on the line L along which the integration is to be performed. In-
tegration of (4.5) may be carried out from a point (£, ) in the shock
surface to any point on the line L; the corresponding values of { may
then be determined from (4.4), including the point lying in the body sur-
face. The formula (4.5) is a generalization, for a body of arbitrary
shape, of the Busemann formula.
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