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The fundamental geometrical property of flow around a body at hypersonic 
speeds is the proximity of the bow shock to the body surface (with a 
correspondingly large density in the layer behind the shock). This pro- 
perty has been used in a number of papers to set up approximate methods 
of calculation (cf. for example [ 1 ] 1. Particular attention has been paid 
to limiting cases in which the ratio of specific heats y + 1 and the Mach 
number M+ = for a body of non-vanishing thickness. The shock then co- 
incides with the body surface, and the density of the air behind the 
shock is infinitely large. Notwithstanding the fact that the thickness 
of the layer behind the shock is equal to zero in the limit, the pressure 
at the surface of the body will be different from the pressure immediately 
behind the shock owing to the action of centrifugal forces on the thin 
layer of high density. This effect of centrifugal forces on surface 
pressure was first computed by Busemann for two-dimensional and axially 
symmetric bodies, and Busemannys solution has been used as the first term 
in a series expansion in powers of a small parameter (c = (y - ll/(y + 11, 
l/ML21 [3. 3 1 and as a first approximation in a process of successive 
approximations [ 4, 5 1 . 

In all the papers mentioned the flows considered were two-dimensional, 
so that the calculations could be materially facilitated by the intro- 
duction of a stream function. In one paper [ 6 1 it was shown that the 
leading terms in an expansion of the stream function in powers of the 
distance from the shock also gives a satisfactory approximation. Although 
attempts have been made to estimate the effects of centrifugal forces on 
pressure for flow around a body of revolution at angle of attack [ 7 I, 
there exists no sufficiently reliable method of calculation, analogous 
to the Busemann method, for a body of arbitrary shape. An attempt to 
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propose such a method is made in the present paper. 

For the limiting case of a layer of vanishing thickness behind the bow 

shock, a method is presented for calculating surface pressure on a body 

of arbitrary shape. The streamlines in the layer behind the shock are de- 

termined as unaccelerated particle paths at the body surface as a function 

of the initial velocities. The streamline distribution through the layer 

is then found from the equation of continuity, and the pressure at the 

body surface is computed when the streamlines are known. 

1. The equation of motion in a system of curvilinear co- 
ordinates based on the bow shock. It is well known that the sur- 
faces parallel to a given surface S together with tm families of develop- 

able surfaces generated by normals to the surface S in the directions of 

[principal I curvature make up an orthogonal system 18 I*. We will take 

as surface S the bow shock, as curvilinear coordinates the parameters 5, 

7 on lines of curvature, and as coordinate 6 the normal distance measured 

from the shock surface toward the body. 

Adopting the usual notation, in which E, G are the coefficients of the 
first fundamental quadratic form, L, N are the coefficients of the second 
fundamental quadratic form, and RF % are the principal radii of curva- 

ture [8 1, for the Lmne'coefficients we will have** 

ahHE 1 
R&, a5.=----.- 

c--c’ H =I 

aInH,, 1 
R&, a5‘=-- 

C-R,’ 

In this system of coordinates the equations of Euler and the equations 

of continuity and isentropy for an ideal gas have the form 

(1.1) 

ahHE 
+ l&w- 

1 ap -- 
x = - pHg aE 

alnH 
+ VW+ 

1 ap 
= -pH,zGq 

* V.V. Struminskii has used such a system for the derivation of the 

boundary layer equations. 

l * The index denotes the quantity varying along the coordinate lines. 
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where u, V, w are the velocity components in the direction of the co- 

ordinate lines. Equations (1.1) represent a system of five quasilinear 

equations in five unknowns u, v, w, p, p. From these five equations may 

be determined five first derivatives with respect to [ at [ = 0, using 

given data imnediately behind the shock. ‘Ihe derivatives d u/d [ , 
d v /a(’ are computed directly from the first two of equations (1.1). 'he 

determinant of the remaining three equations, from which the derivatives 

of w, p, and p with respect to < are to be found, is 

1 
w 

-F 0 

P 0 w _$(y +2) 

0 “p-y -ypwp-(YSl) 

and reduces to zero only if the shock degenerates into a weak wave. 

Further derivatives with respect to < may be found by differentiating 

equations (1.1) with respect to (, whereas the determinant of the last 

three equations will be the same. 

2. Velocity, density, and pressure immediately behind the 

bow shock. 'Ihe normal velocity component w2, the density p2, and the 

pressure p2 imnediately behind the shock are expressed in terms on the 

normal velocity component wl, the density pl, and the pressure p1 ahead 

of the shock in the following way; 

wa == w1 

p2 = (1 -E)fJ1W12 
i = velocity of sound) 

Note: If the enthalpy behind the shock may be taken as 

i2= YZPZ 
‘fz- 1 Pz 

but y2 f y1 because of the high temperature, then 

w2 - wl-f2 1 + Q12 
Y2 + 1 [ 

- - ($5 (I- 32+ ($i - i$) [i + ($&i])“‘] YlWl” 

so that for y2 + 1 the velocity v2 behind the shock approaches zero in- 

dependently of w,,/al. 
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If we assume that the vector velocity V in the undisturbed stream 
(ahead of the shock) is situated in the xy plane and makes an angle a with 
the x-axis, then the components of this velocity in the curvilinear co- 
ordinate system will be 

In order for it to be possible to introduce a stream function, one of 
the derivatives in the continuity equation (the fourth of equations 1.11, 
for example 6’puH /a~, has to be put equal to zero, in particular, 
itmnediately behin 6‘ the shock. ‘lhis is possible only if all the derivatives 
of the coordinates n, y, I with respect to 5 and q are functions only of 
[ at the shock, or if cos adn/dq+ sin say/d?= 0 at the shock. 

In the first case the shock is a cylindrical surface, and the lines 
r) [= constant 1 are straight lines; in the second case the shock is an 
axially symnetric or helical surface, and the lines q [= constant 1 are 
either circles or straight lines. The shock configurations just specified 

exhaust the cases for which a stream function may be introduced. 

3. Approximate equations for the case of a "strong shock. 
Equations (1.1) are materially simplified if the density behind the shock 
is much greater than the density in the undisturbed stream (the limit 

P/Pi + bo ). ‘lhis occurs for t + 0 or for ai2/~12 + 0; i.e. for MI -) m , 
provided that the angle between the normal to the shock surface and the 

vector velocity V does not approach n/2 (nonvanishing body thickness). 

This case corresponds to a value of the similarity criterion for super- 

sonic velocities K + m . For the conditions specified it may be assumed 
that quantities are of the same order in the layer behind the shock as 

they are just behind the shock, namely 

w = EVW), U = VU’, v=Vu’, f+ 
P 

P = P1V2P’ 

where E is a small parameter and w’~ uei E)‘~ p’> p’ are quantities of 
order unity. ‘Ihe coordinate [ is of the order of the small parameter t 

compared to the two other coordinates. ‘Ihe elimination of quantities of 

order c or higher in equations (1.1) compared to quantities of order 

unity gives the following simplified equations: 
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(3.2) 

(3.3) 

(3.4) 

(3.5) 

Multiplying the first equation by u and the second by v and adding, 
we have 

(3.6) 

That is, the projection of the velocity on a plane tangent to the shock 

does not change along a streamline. Thus in the case of high density but 

finite pressure behind the shock the gas in the thin layer between the 

shock and the body moves without acceleration in a tangential plane, 

while the component of acceleration normal to the shock (body) surface 

is balanced by a pressure gradient normal to the shock surface. We will 

use the notation tg 0 = u/v, q = d u2 + v2; then, taking account of (3.6)) 

instead of equations (3.1)-(3.5) we obtain 

c0seae I sin0 a0 w ae cos 8 a In YE sin8alnVG -- V/Bat I jqG+;z=-p-- 
r/F arl r/B aE 

(3.7) 

~052 e sin2 e 1 aP -+x--=--- 3 rl Q@ x (3.8) 

(3.10) 

‘Ihe assumptions adopted here concerning the small thickness of the 
layer behind the shock and the high density in this layer are permissible 

as long as the pressure at the surface of the body does not become small 

(p = 0), in which case there is a corresponding decrease in the density 
and the shock leaves the body. Under these conditions the disturbances 

are already small, and it is not permissible in the equations of motion 
to discard quantities of order 6. An estimate of the order of the terms 
in the equations of motion for this case of small disturbances (K > 0, 

but K f DO 1 leads to certain simplifications [ 1 1 ; however, the use of a 
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system 

4. 

of coordinates based on the shock is unsuitable for this case*. 

Approximate solution. One method for computing the flow behind 

the shock is the use of series in powers of c, the coefficients of which 

are calculated from equations (X.1)-(1.5) or (3.1)-(3.5). 

The accuracy of such calculations (series convergence), especially 

for the region of subsonic flow in front of a blunt-nosed body, needs 

investigation; nevertheless, the results of sufficiently rigorous cal- 

culations 19 I for a body of revolution (M = 5.8) apparently show that in 
the subsonic region the change in the velocity components with a change 

in < may be adequately represented by the first terms of the series [ 6 ] . 
For pressure and density it is better to use the Bernoulli equation 

u2 + U2 + IL’2 
i 

1+&P V” 
2 --r,=T 

+ 
I$_ &PI -.- 

2E PI 

With the object of confirming this explicit assumption, we will present 

the results of calculations, using the series, of the distance A between 

the shock and the stagnation point of a blunt axially symmetric body. 

From equations (3. U- (3.5), on the longitudinal body axis behind the shock 

we obtain 

dW 

(-> 

2v 
ag ---3 2 = -- R, (ag)z = & 

c 

where Rc is the radius of curvature of the shock. Consequently 

At the stagnation point of the body ID = 0, so that for the distance 

between the shock and the stagnation point we obtain 

A = (24%) T R,, -$- = (21 1/2)~ 
e 

for Ml-too 

This value of A for M, + bo proves to be close to the value calculated 

by the method of Ref. 6. The use of series for the case of a body of 

arbitrary shape will lead to a complicated computation, and here we will 
employ another procedure suitable for the solution of equations (3.7)- 

(3.101, given the normal velocity, density, and pressure at the shock in 

accordance with equations (2.1)-(2.3). 

l It is an interesting circumstance that in the case of a thin wing 
lying in the XL plane the equations of motion for small disturbances 

reduce to the non-steady equations of motion for a piston at each 

cross-section whose plane is parallel to the plane xy. 



Centrifugal forces and surface pressure in hypersonic flor 89 

Considering the extreme thinness of the layer between the shock and 
the body, we will assume that the particle paths in the gas are [equally] 

inclined to the surface of the shock; then in place of (3.7) we will 

obtain 
case a0 * sin0 ahVZ u'E ac; +e&+!$ayE__ -- 

Y-E ac; (4.1) 

This assumption may give rise to appreciable errors only in the 

neighborhood of the stagnation point of a blunt body. If the equation of 

a streamline isq = q (ti, then tg8= qmdq/d(. But the left-hand 

side of equation (4.1) is nothing but the derivative of the angle 8 along 

the arc of a streamline; i.e. (a 8 / a[ 1 cos 8 /\/ E. Consequently, in 

place of (4.1) we will have 

(4.2) 

From this equation we obtain an ordinary nonlinear second-order equa- 

tion to determine the streamlines; 

(4.3) 

lh=ing the projection of the streamlines on the shock surface, it is 

now necessary to distribute these streamlines across the layer in such a 

way as to satisfy the continuity equation. 

At any point tc$, T/1 th e streamlines passing through -a normal to the 

shock surface end on some line L in the shock surface. We will take a 

surface element defined by an element of this line L(do, 1 and an element 

of its normal (dn2) at a point (c,, q2 1. The equation of continuity for 

a stream tube passing through this surface element will be p,tp,do,&tn, = 

p qd5dn. where oh is the distance between the streamlines generating 

the stream tube (passing through the ends of the segment ~$1. 

Let the equaticn of a streamline be given in the form w =‘ft (4;, q2, El. 

The increment in the coordinate rl for a change in the parameters t2, q2 
together with a displacement along the stream line should be equal to 
the increment in the coordinate q for a displacement along a normal to 

the streamline at the point Q, ~1; 

From this 



90 C. I. Maikapar 

lhe increments in the parameters 4;) q2 are found from the quantity 

% and we obtain 

- I/z2dEa = dn, sin r2, 1/G<dT, = dn, cos r2 

where y2 is the angle between the tangents to the line L and to the co- 
ordinate line I$ at the point (~$2, 121. Inasamch as d[ =- (l/dn sin f3&, 
then 

Substituting this expression in the continuity equation, we obtain 

dr; = PI ~1 daz 
wm W (4.4) 

lhe variable of integration in (3.81 may now be changed from ( to a*: 

ap PIWlQ COG 8 sin2 6 -=_-- 
aa2 ( ??I (02) Rg f-37 9 > 

(4.5) 

lhe quantities entering into (4.5) depend both on the coordinates of 
the point (6, rjl as parameters and on the coordinates of the point @,, 
q21 on the line L along which the integration is to be performed; In- 
tegration of (4.5) may be carried out from a Point <t, q) in the shock 
surface to any point on the line L; the corresponding values of 5 may 
then be determined from (4.41, including the point lying in the body sur- 
face. 'lhe formula (4.51 is a generalization, for a body of arbitrary 
shape, of the Busemann formula. 
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